Modified alternating direction-implicit iteration method for linear systems from the incompressible Navier-Stokes equations

نویسندگان

  • Yu-Hong Ran
  • Li Yuan
چکیده

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. In order to solve the large sparse systems of linear equations arising from numerical solutions of two-dimensional steady incompressible viscous flow problems in primitive variable formulation, Ran and Yuan [On modified block SSOR iteration methods for linear systems from steady incompressible viscous flow problems, Appl. Math. Comput. 217 (2010), pp. 3050–3068] presented the block symmetric successive over-relaxation (BSSOR) and the modified BSSOR iteration methods based on the special structures of the coefficient matrices. In this study, we present the modified alternating direction-implicit (MADI) iteration method for solving the linear systems. Under suitable conditions, we establish convergence theorems for the MADI iteration method. In addition, the optimal parameter involved in the MADI iteration method is estimated in detail. Numerical experiments show that the MADI iteration method is a feasible and effective iterative solver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Alternating Direction Implicit Method for Modeling of Fluid Flow

This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...

متن کامل

A Parallel Solver for Incompressible Fluid Flows

The Navier-Stokes equations describe a large class of fluid flows but are difficult to solve analytically because of their nonlinearity. We present in this paper a parallel solver for the 3-D Navier-Stokes equations of incompressible unsteady flows with constant coefficients, discretized by the finite difference method. We apply the prediction-projection method which transforms the Navier-Stoke...

متن کامل

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

Time Step Restrictions Using Semi-implicit Methods for the Incompressible Navier-stokes Equations

The incompressible Navier-Stokes equations are discretized in space and integrated in time by the method of lines and a semi-implicit method. In each time step a set of systems of linear equations has to be solved. The size of the time steps are restricted by stability and accuracy of the time-stepping scheme, and convergence of the iterative methods for the solution of the systems of equations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2011